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Recurve Comments on Straw Proposal on Advanced Metering Infrastructure (AMI) Data
Transparency, Privacy & Billing

Recurve is an industry leader in meter-based demand flexibility. Our data analysis platform is
designed to integrate data from utilities and implementers to facilitate distributed energy
resource market transactions. The Recurve platform supports a range of market actors to
deliver distributed energy resources consistently and transparently via a streamlined market
access model, rather than a restricted winner-take-all program design. We appreciate the
opportunity to comment on the Board of Public Utilities' straw proposal on the data access.

We applaud the Board of Public Utilities' vision of ensuring that data access for customers
and market actors will enable robust Distributed Energy Resource markets. The straw
proposal articulates a foundation and several potentially successful strategies for achieving
this goal.  In particular, we encourage BPU to amplify the following components as the
proceeding continues:

● Ensure that consistent implementation is required across regulated entities if Green
Button Connect is adopted as a standard for customer data access.

● Specify that enabling distributed energy resources is core to grid optimization and
operations and represents an essential, primary use case.

● Consider a step-wise approach to data access starting with decentralized
standardization of a common specification and consider a centralized repository based
on that experience.

● Consider the inclusion of differential privacy as a risk-based security best practice to
ensure data can be shared while appropriately protecting customer privacy.

Green Button Connect: Ensure Consistent Implementation
Staff correctly note that: "the Green Button Connect project is that it is best suited to
providing individual customers with access to real-time data, with an intuitive interface and
the ability to provide customers with daily access to their energy usage, and to allow these
customers to establish an automated ongoing feed to third party systems."

The sometimes lesser-known experience of market actors attempting to work with Green
Button Connect is that no two instances are alike.  Recurve has managed to integrate with
utility-designed customer data access portals compliant with the Green Button Connect
guidance. Still, each one has required an extreme level of customization to build the
integration.  They have also suffered from unpredictable service and other painful
operational issues.
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Based on this experience, we recommend that BPU, if it should adopt Green Button Connect
as the standard, do so with an intent to develop and enforce a consistent implementation of
it across the regulated entities, including service expectations.  Consistency across regulated
entities would go a long way to ensuring that both customers can seamlessly authorize and
market actors can seamlessly access authorized data streams.  We are happy to have further
detailed technical discussions regarding our experience.

Specify that enabling distributed energy resources is core to grid optimization
Staff eloquently lay out some of the critical considerations of the "Appropriate Utility Use of
AMI Data." We applaud the Staff for pointing out the risks of monopoly power and generally
support their position that the Board should "enshrine the principle that EDC usage of smart
meter data be limited to core functions, including billing, settlements and reliability."

We recommend that BPU consider adopting primary and secondary use cases to establish
the boundaries of defining appropriate limitations.  This construct, utilized in California, has
been helpful to establish when and where utilities can or are obliged to share data. As
provided in the California Public Utility Commission's Decision 11-07-056; a primary
purpose is defined as the use of information to:

(1) provide or bill for electrical power,

(2) fulfill other operational needs of the electrical system or grid,

(3) provide services as required by state or federal law or specifically authorized by an
order of the Commission, or

(4) implement demand response, energy management, or energy efficiency programs
under contract with an electrical corporation, under contract with the Commission, or as
part of a Commission authorized program conducted by a governmental entity under
supervision of the Commission.

For primary purposes, the same decision adopted specific use and disclosure limitations to
protect the sharing of covered information, specifically:

6. USE AND DISCLOSURE LIMITATION

(a) Generally. Covered information shall be used solely for the purposes specified by the
covered entity in accordance with section 3.

(b) Primary Purposes. An electrical corporation, a third party acting under contract with
the Commission to provide energy efficiency or energy efficiency evaluation services
authorized pursuant to an order or resolution of the Commission, or a governmental entity
providing energy efficiency or energy efficiency evaluation services pursuant to an order or
resolution of the Commission may access, collect, store and use covered information for
primary purposes without customer consent. Other covered entities may collect, store and
use covered information only with prior customer consent, except as otherwise provided
here.

(c) Disclosures to Third Parties.

● (1) Initial Disclosure by an Electrical Corporation. An electrical corporation
may disclose covered information without customer consent to a third party
acting under contract with the Commission for the purpose of providing energy
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efficiency or energy efficiency evaluation services authorized pursuant to an
order or resolution of the Commission or to a governmental entity for the purpose
of providing energy efficiency or energy efficiency evaluation services pursuant
to an order or resolution of the Commission. An electrical corporation may
disclose covered information to a third party without customer consent

a. when explicitly ordered to do so by the Commission, or

b. for a primary purpose being carried out under contract with and on
behalf of the electrical corporation disclosing the data, provided that the
covered entity disclosing the data shall, by contract, require the third
party to agree to access, collect, store, use, and disclose the covered
information under policies, practices and notification requirements no
less protective than those under which the covered entity itself operates
as required under this rule, unless otherwise directed by the
Commission.

Note that the Commission also gave itself some flexibility in the future by stating that the
Commission can explicitly order a qualifying use case, this may be particularly valuable in the
context of an emergency situation.

With edits to define the specific conditions of primary purpose appropriate for New Jersey,
this model could be used to establish the proper limitations and protections.  The BPU could
broaden the definition of primary purpose use cases to include access for "all providers of
energy-related services having access to this information" or more limited by specifying
which energy-related services would qualify.

It is important to note that classification as a primary purpose also means entities would
have access to data without customer consent, where it is infeasible or impractical to get
customer consent. To target distributed energy resources where they will have the most
significant impact, a view of energy consumption patterns in the population is essential.
Likewise, to properly account for the impacts of most distributed energy resources,
non-participant data allows for assessing program impacts relative to the population. As
provided in the use and disclosure limitations, regulators should ensure that data protection
exists and are enforced for any entity entrusted with such data.  Entities handling the data
should have proper qualifications and certifications to demonstrate their ability to maintain
cybersecurity.

Many other considerations are, of course, present in California and other jurisdictions'
assessment of appropriate access. We find that the primary and secondary purpose
classifications offer an important distinction of how the data shall be used prior to
considering who may have access to that data and how they're expected to protect it,
creating a clear transfer of liability.  We are happy to have further discussions regarding the
variants of this model that may be a good fit for New Jersey.

Consider a step-wise approach to data access starting with decentralized standardization
The staff proposal notes the successes of both decentralized and centralized data repository
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models.  Recurve notes that this consideration is highly dependent on the envisioned use
case, and the sense of cooperation of the regulated entities.  We recommend a no-regrets
first-step strategy of building a decentralized standard for data access for customers and
third parties bound by particular use cases.

A centralized approach will ultimately require all regulated entities to standardize a core set
of d architecture. Establishing that standard can start now, and requirements for providing
data can also be established now. If data can flow appropriately, it may be that no
centralized model is needed.  If data can't flow appropriately, then a centralized model could
be used to build on and enforce the established standards.

The risk of starting with a centralized approach is that the project's scope and scale can
quickly balloon. By focusing on a decentralized model first, BPU can focus regulated entities
on the core goals of the proceeding and build toward a more resilient and adaptable model
for the future.

Consider the inclusion of differential privacy as a risk-based security best practice
We support the concept of a risk-based approach to defining the overall framework. We
encourage BPU to adopt a use-case-specific framework that can leverage the best
cybersecurity and privacy protection practices.

We encourage BPU to consider an emerging best practice in data privacy: differential
privacy. Differential privacy adds noise to aggregate statistics to make determining the
contribution of any individual to the overall result more challenging. This method has become
more popular as a growing body of academic research demonstrates that the status quo of
aggregation-based anonymization approaches (such as 15/15) fails catastrophically in the
face of increased data collection, computational power, and cybersecurity risk. Notably, the
US Census decided to apply differential privacy to the 2020 decennial census because they
found that, in some cases, 70% of individuals were able to be re-identified. In addition to1

providing inadequate data protection, fixed aggregation parameters have significantly limited
the value of the information for important use cases.

Differential privacy offers unique benefits for many energy data use cases by providing a
testable mathematical framework for managing risk for a wide variety of applications. A
practical risk-based framework must include clear, traceable documentation of how
privatization or aggregation is implemented. Differential privacy is quickly becoming a
security best practice, and shortcomings of aggregation approaches continue to be revealed
in other jurisdictions and privacy applications. Finally, given the more technical nature of
applying differential privacy, it may be necessary to join or create a different kind of
technical review network to adequately test the privacy approaches' veracity and report and
recommend improvements.

1 Abowd, J.M., n.d. Staring Down the Database Reconstruction Theorem 13.
https://www2.census.gov/programs-surveys/decennial/2020/resources/presentations-publications/20
19-02-16-abowd-db-reconstruction.pdf?
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Aggregation-based
Anonymization

Differential
Privacy

Access defined by Use Case ✓ ✓

Supports Risk-based Framework
Use cases can be very

limited in a binary frame
✓

✓

Mathematical Less Rigorous
✓

More Rigorous
✓

Testable binary compliance status ✓

Clear, traceable documentation practically undocumentable
without access to the data ✓

Security best practice consistently documented
failures ✓

Technical review network consultant pool academic pool

As noted, differential privacy adds noise to aggregate statistics to make determining the
contribution of any individual to the overall result more difficult. The amount of noise added
is based on a rigorous mathematical definition of privacy. Because of this foundation, the
privacy guarantees are composable across various statistical calculations, including those not
explicitly defined in advance.
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Recurve has deployed a suite of tools to support the consideration and inclusion of Energy
Differential Privacy in data access frameworks.

As part of a Department of Energy-funded project (the Secure Energy Algorithm Testbed),
Recurve deployed differential privacy to safely compute aggregate statistics across a large
California service territory to understand the impact of COVID-19 across business subsectors.
This analysis was enabled by DP's unique strength and flexibility and would not have been
possible using 15/15 aggregation without compromising privacy.

Other potential use cases for
differential privacy include providing
DER aggregators access to privatized
data to prepare portfolios and target
customer classes using useful
consumption profiles. Aggregators can
be given access to qualified customer
lists without having direct access to
their consumption data. When coupled
with Green Button Connect
authorization from the customer,
aggregators CAN have full access to
customer data.

Recurve published results of their
preliminary findings on this approach2

and use case in the 2020 American Council for an Energy Efficient Economy (ACEEE)
summer study on Energy Efficiency in Buildings.  A copy of this paper is provided in the
appendix.

Recurve also demonstrated the capabilities for differential privacy in another jointly funded
NREL-DOE paper titled: "Applying Energy Differential Privacy To Enable Measurement of the
OhmConnect Virtual Power Plant." This study leveraged the publicly available codebase to
operationalize differential privacy (EEprivacy) and clearly illustrated the practicality of
leveraging this security best practice for energy data.

A new "Energy Data Access: A Guide to Leveraging Differential Privacy" is also pending
release, and may be of particular relevance to this proceeding. We will share the document in
the proceeding when it becomes available.  It provides a step-by-step approach for
considering risk for various use cases and the appropriate application of a privacy factor

2 Young, et. al. Differential Privacy for Expanding Access to Building Energy Data, ACEEE Summer Study
on Energy Efficiency in Buildings. August 2020.
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based on risk. It is accompanied by an online tool, the Data Privacy Explorer, that supports
users in considering privacy thresholds appropriate for various situations.

Differential privacy is not a silver bullet for data access considerations. Still, it could
significantly enhance the options considered by the BPU and complement the broader set of
possibilities for cybersecurity and privacy currently in play. The figure on the right helps
illustrate the areas where differential privacy can enhance New Jersey's data access
framework in relation to other known privacy strategies. We hope it can be a core
component of continuing conversations in this proceeding.

We look forward to participating in this proceeding and appreciate the effort of BPU to date
to craft a vision for the future of data access to support robust DER markets in New Jersey.
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Differential Privacy for Expanding Access to Building Energy Data 
McGee Young, Recurve 

 Marc-Antoine Paré, Recurve 
Harry Bergmann, United States Department of Energy 

Abstract 
This paper reviews the current literature on differential privacy, explains its relevance to existing 
energy data privacy rules, and describes how different permutations of core mathematical 
principles can be applied to it. We then review a variety of use cases that have been developed as 
part of a DOE grant that has supported this research and provide insights based on a proof of 
concept differential privacy library that we have developed. Finally, we discuss technical and 
policy pathways forward. 

Introduction 

Demand side programs play an important role in grid decarbonization scenarios over the 
next two decades. Given that the carbon-intensity of electricity increasingly depends on when 
and where it is consumed, planners and program implementers are transitioning from a focus on 
total savings to one that prioritizes time- and location-sensitive impacts. One key impediment to 
this transition is the fact that individual building energy consumption is generally considered to 
be protected under most privacy regulations (Veliz and Grunewald 2018). However, these 
protections are equivocal and unevenly applied (Ashar et al. 2017). Some rules of thumb have 
been turned into actual rules, such as aggregation rules that require data releases to roll together 
multiple buildings in order to conceal the identities of particular consumers. However, in other 
jurisdictions, individual customer level data is freely available.1 

The seismic shift in market conditions currently underway raises fresh questions about 
long-standing firewalls between customers, utilities, and third-parties that prevent broad sharing 
of customer energy consumption data. While utilities need individual data for billing purposes, 
significant controversy surrounds data sharing with third parties without express customer 
content. Proponents of liberalized access argue that as demand side programs consider 
compensation schemes based on metered savings, outside parties must be able to gain access to 

1 See, e.g., http://gainesville-green.com/ 
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individual building-level data.2 Similarly, researchers have chafed at the paucity of data available 
that reflects real-world conditions in buildings.3  

In this paper, we describe a system for providing privacy-preserving access to otherwise 
private customer-level energy data. We employ differential privacy to provide a mathematically 
rigorous foundation for privacy protection. We analyze the trade-off between privacy protection 
and statistical utility for two characteristic use cases - customer targeting and comparison groups. 
Finally, we describe a system architecture that has been developed by LBNL, NREL, DOE, and 
Recurve. This system architecture will be launched in a proof of concept demonstration in 2020 
with release as a fully functional open-source module planned for 2021. 

Differential Privacy: Background 

Differential privacy is a mathematical framework with composable, flexible privacy guarantees 
that hold regardless of an attacker’s existing knowledge about the underlying data. The 
mechanism underlying this technology was first described in 2006 by Cynthia Dwork and has 
received extensive academic treatment since then (see e.g., Dwork and Roth 2013). A number of 
parties have deployed the technology in industry settings, notably a 2018 Uber/Berkeley 
initiative designed for running arbitrary SQL queries against rider data, in response to GDPR 
(Johnson et al. 2017).  

The basic workings of differential privacy are intuitive to understand and consistent with 
many existing data aggregation rules. Imagine that you would like to learn what the average 
annual energy consumption is for a group of buildings, while still preventing identification of 
any particular building’s consumption. Currently in California, for example, if these are 
residential buildings, at least 100 buildings must be represented in the aggregation with no single 
building representing more than 15% of the total consumption. (If the buildings belong to the 
commercial sector, the required number of buildings is relaxed to 15 in the aggregation.) These 
techniques are designed to add noise to the result in a way that obscures the contribution of any 
individual building to the final average, even if you knew the consumption of all the other 
buildings.  

Differential privacy adds this noise in a way that meets precise mathematical definitions. 
Whereas the noise added through conventional aggregation techniques may leave sensitive data 
exposed in unpredictable ways, the noise added by a differential privacy mechanism provides a 
different sort of guarantee. Where data has been protected through differential privacy, an 
attacker with perfect information about a database can only increase their knowledge about 
whether an individual’s data was even included in the dataset up to a threshold ε. That is, the 
number of queries that can be executed against a database can be limited so that up to a certain 

2 One example organization pushing for liberalizing data access is Mission Data. 
http://www.missiondata.io 
3 A recent report documenting efforts to use data to improve energy efficiency can be found at 
https://www.imt.org/resources/putting-data-to-work-how-cities-are-using-building-energy-data-to-drive-eff/ 

12-455©2020 Summer Study on Energy Efficiency in Buildings



limit, it will be impossible to know whether or not any particular building’s energy use is 
included within the dataset in the first place. Once this threshold is crossed, the attacker would 
know whether or not an individual building’s data was included, but the data would still be 
aggregated and subject to the same protections as existing aggregation rules, meaning that even 
if it were known whether or not an individual’s data was represented, the individual’s 
contribution to the aggregation would still not be known. In short, differential privacy adds a 
second layer of protection to ensure anonymity of individual user data within an existing set of 
dataset aggregation protections. 

Mathematically, ε is defined as the ratio of probabilities between two databases that differ 
by a single element. This ratio must hold for all possible outputs and all possible pairs of 
neighboring databases. If an attacker were to try to infiltrate a dataset by utilizing other available 
data (such as public records), the ε protection would still hold for the differentially private 
dataset. As Figure 1 shows, the differentiation between query outputs is accomplished by varying 
the probability of the validity of any given output. One way to think about this is to imagine that 
you would ask someone a yes/no question and there would be a varying probability that the 
answer they provided was true or not. Only by repeatedly asking this question could you start to 
guess whether the answers were truthful. The ε value prevents you from asking this question 
enough times to develop any certainty about the responses. 

Sensitive Data 

Differential Privacy 

Private Aggregate 

Figure 1. Differential Privacy aggregates data and adds noise to make it difficult to determine the contribution of 
any particular element in the dataset. 

12-456©2020 Summer Study on Energy Efficiency in Buildings



Figure 2. The ratio of the likelihood of any output from a differentially private mechanism with and without any 
particular element should be bounded by eε. 

A fundamental concept in Differential Privacy is the “privacy budget”. Every 
anonymization technique, from k-anonymity, to the 15/15 rule, to Differential Privacy, reveals 
some amount of information about the individuals in the dataset. For example, imagine if one 
were able to find out the consumption information for 14 of the 15 individuals in a dataset 
anonymized by the 15/15 rule; it would be possible to then deduce that final participant’s energy 
usage. This sort of attack is not just theoretical; Netflix’s de-identified movie review database 
was re-identified using publicly available IMDB data. Even more shocking was researchers' 
ability to uncover the health information of Massachusetts Governor William Weld. The 
information had been de-identified in accordance with HIPAA standards, but was re-identified 
using cross-referenced public voting records.  

In contrast to other privacy techniques, Differential Privacy quantifies the risk to each 
individual contained in a dataset no matter how much additional data is released about them. 
This risk is quantified as ε, the privacy parameter. 

Given the vulnerabilities of existing privacy practices, the guarantees offered by 
differential privacy mechanisms have a number of highly desirable properties. 

● They are composable: it is possible to compute an exact bound on privacy loss from
multiple statistical releases. Multiple queries against a database gracefully degrade
privacy guarantees instead of catastrophically failing (non-binary outcomes are possible).

● The privacy protections are not dependent on an attacker’s existing level of knowledge.
● The outputs of a differentially private mechanism are robust to post-processing, not

compromising privacy no matter how much additional computation is performed on
them.

Architecture for a Differentially Private Query System 

A differential privacy software architecture could take many forms. For energy data, the 
most common existing use case is an interactive query architecture (see, e.g., https://openei.org/). 

Pr[M(D’)=y] Pr[M(D)=y]
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We use this typical scenario to describe a simplified data governance structure, shown in Figure 
2, whereby a sensitive dataset is managed by a data administrator and users issue queries via a 
secure interface. This framework provides visibility into how a privacy budget is allocated across 
an entire dataset that is shared by all users of the system. As queries are issued, the privacy 
budget is consumed, and, once exceeded, all access to the system is revoked. 

Differential Privacy in Action: An Example for Building Energy Consumption 

Following the architecture described above, we provide a simple use case that would 
benefit from a layer of differential privacy protection. Imagine that an agency would like to 
release the average annual energy consumption for a group of buildings. These consumption 
values would range from zero to some maximum, Cmax.  

Our differential privacy algorithm must compute the amount of noise that will obscure an 
individual building’s contribution to the final average. The basis of this computation is the 
condition that the maximum amount that a single building can contribute to the average of the 
group, ΔAmax, is 

ΔAmax = Cmax / N 

where N is the number of buildings in the query. 
One common technique for generating noise is the Laplace mechanism, shown in Figure 

3, which adds noise derived from a Laplace distribution. A Laplace distribution uses ε, which is 
the “privacy parameter” to determine the amount of noise that gets added to an aggregation 
result. For any given desired ε, the Laplace distribution with mean zero and scale b = ΔAmax / ε 

Figure 3. Differential privacy data governance structure. 
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quantifies the strength of the privacy guarantee. Counterintuitively, the higher the ε, the less the 
data is obscured. So a dataset with ε of 1.0 will be obscured less than a dataset with ε of 0.1. 

Figure 4. Example Laplace distribution. 

Using this probability distribution function, many of the noise values generated are 
around zero, but there is a reasonable chance that values further away are chosen. In our 
example, if we had a portfolio of 5,000 homes (N=5,000), whose annual consumption ranged 
from 0 to 30,000 kWh, and a privacy parameter of ε = 1.0, the final output would be a value 
sampled around the true mean at ±36 kWh at 95% confidence, as shown in Figure 4.

Figure 5. Distribution of differentially private outputs from example query. 

Choosing the Privacy Parameter ε 

Core to the differential privacy formulation is the privacy parameter ε that dictates how 
much noise is added to output statistics. Unfortunately, the inventors of differential privacy point 
out that the choice of this parameter is “essentially a social question” left to implementers 
(Dwork 2008). Existing work provides some guidance as to the range of choices of ε that should 
be expected as policy evolves. The Census Bureau arrived at an ε of 8.9 for the OnTheMap 
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application (Andersson et al. 2009). Hsu et al. (2014) summarize a number of sources, finding 
most values to range between 0 and 1, with some as high as 10. 

To provide guidance on the necessary privacy parameter for useful outputs, the rest of 
this paper examines a range of ε choices from 0 to 9 for different use cases. In future work, we 
hope to provide guidance for data owners to choose privacy parameters based on their legal 
restrictions, dataset characteristics, and threat models. 

Exploration of Key Use Cases 

An initial technical advisory group was created to support the development of use cases 
for this project. As we describe below, these use cases flowed from existing challenges facing 
researchers and program administrators as a result of data privacy restrictions. We examine how 
program administrators might use differential privacy for energy savings calculations from non-
participants and how differential privacy could be used by utilities to provide more targeted 
incentives for efficiency initiatives. 

Energy Savings Calculations in a Comparison Group 

Open-source methods such as CalTRACK allow energy efficiency savings to be valued 
using observed changes in energy consumption. In estimating the impacts of programs, it is often 
necessary to account for factors that may cause energy use to change, but are exogenous to the 
program. A very timely example is the impact of Shelter in Place orders related to COVID-19. 
Many commercial facilities have closed or significantly reduced their consumption, while 
residential buildings are increasing their energy consumption. To accurately estimate the impact 
of an energy efficiency program, it would be necessary to filter out the changes due to this large 
scale exogenous event. 

Retrospective program analyses have used the consumption data of similar non-
participants to estimate the impact of exogenous factors. But for the purposes of retrospective 
program analysis, this non-participant data is tightly controlled and available only to small teams 
of hand selected analysts. For today’s market participants that are being held accountable for 
meter-based savings, real-time access to non-participant comparison group data is essential, 
especially in the face of unprecedented uncertainty associated with COVID-19. Here is an 
example of how a differential privacy approach can meet participants’ need for comparison 
group data while retaining customer privacy:  

A query may look like the following: compute the average percent NMEC (Normalized 
Metered Energy Consumption) savings for a portfolio of 2,000 buildings that underwent 
efficiency projects and a similar portfolio of buildings that did not participate in a program. 

NMEC savings are a percentage value, clipped to range from -20% to 20% savings 
(larger values are generally dropped from the analysis as outliers). The final average of a 
portfolio tends to be between -4% and 4%, with model error ±1% . 
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The plot below in Figure 5 shows the error at 95% confidence for this example using the 
Laplace Mechanism for ε values ranging from 0.0 to 4.0. The error values here are for percentage 
points. For example, for an output mean of 3% and ε=0.25, the final output would be 3% ±0.5%. 

Figure 6. Range of error at multiple ε values. 

Queries with ε values 0.2 and greater have equal to or less error than the underlying 
model error. Depending on the use case, these errors are acceptable, though, in general, as little 
error as possible is desirable. 

The energy savings calculation use case also demonstrates the sensitivity of accuracy 
from query characteristics. A query over a larger portfolio will be more accurate because the 
scale parameter is reduced proportionally with an increase in N. Similarly, if the sensitivity (Δ) 
of the dataset is decreased by clipping more aggressively, from a range of [-20%, 20%] instead 
of [-40%, 40%], the statistics output will have less noise introduced by the Laplace Mechanism. 
The influence of some of these parameter choices is plotted in Figure 6 below: 
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Figure 7. Influence of sensitivity and portfolio size on error. 

Limitations 
It is clear from the plots of output error bounds that differential privacy is not suitable for 

queries for portfolios on the order of 10s to 100s of sites because of large amounts of output 
error. In some cases, it might be possible to issue a single query at high ε to get a reasonable 
answer for smaller portfolios, but this bumps into a further limitation of the behavior of 
differential privacy under multiple queries. 

The major limitation facing differential privacy for the energy savings calculation use 
case is managing privacy budgets for multiple queries. The examples so far have considered 
issuing a single query. In practice, an interactive query system would need to support a large 
number of queries. With the query model described so far, the privacy impact of multiple queries 
is computed via composition. There are a number of composition approaches, the simplest 
formulation being “basic composition” in which the ε values add up from each of the queries 
issued to a total ε value for the entire sequence. In other words, five queries of ε=0.1 have a total 
ε=0.5. This privacy impact adds up quickly, exhausting even the most generous overall privacy 
budgets after tens to hundreds of queries. 

While differential privacy for energy savings calculations faces some limitations, there 
are ways forward. The results so far show that, for high value queries, differential privacy offers 
strong privacy protection and reasonable accuracy. To expand the number of queries supported 
by a differential privacy system, there are alternative composition formulations like Advanced 
Composition and Zero-Concentrated Differential Privacy that allow for more queries at the 
expense of slightly more complicated privacy models. The accuracy and composition problems 
can also be addressed by incorporating a contractual layer to the system that limits sharing of 
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outputs to specified parties, which would allow more generous privacy budgets since the budget 
did not have to be shared globally. 

Targeting 

The second use case that we profile shifts the privacy logic in a different direction. As 
many program evaluations have shown, actual savings from energy efficiency measures vary 
quite significantly from building to building. Recurve’s Resource Planning tools have shown that 
existing patterns of energy use within a building can be highly predictive of the potential for 
future energy savings in a building (see also, Borgeson, 2018). Being able to more accurately 
target buildings with a high potential for valuable demand flexibility gives third parties an 
enormous advantage, especially for utility procurements in which incentives are tied to the value 
of the savings at particular times of day. Utilities would like to be able to provide third parties 
with portfolios of candidate sites for retrofits that greatly increase the likelihood of success 
without revealing any individual site’s energy consumption patterns. 

For this use case, a differentially private targeting query can be constructed using a 
randomized response method. This method, developed in the 1960s for psychological research 
(Fox 1986), is at the core of Google’s differentially privacy system, RAPPOR (Erlingsson et. al 
2014). 

To understand how a randomized response privacy protection works, consider how you 
might obscure answers to a yes/no question. In this case, participants are asked a yes-or-no 
question and flip two coins secretly. If face-up, the participants respond truthfully to the query. If 
face-down, the participant responds with the value shown by the second coin, i.e. randomly. 
With a large enough pool of participants, the effect of random response can be averaged out of 
the final out of “yes” and “no” responses. 

Randomized response provides differential privacy. For a fair coin (pface-up = 0.5), the 
equivalent ε is equal to ln(3). By changing pface-up, the privacy guarantee and accuracy can be 
adjusted. 

This procedure can be adapted to the targeting use case. As a simplified example, 
consider a program that would like to target the top 50% of energy consumers in a population. A 
database is prepared with an entry for each building: one if it is in the top 50% of energy 
consumers and zero otherwise. The randomized response procedure is performed for each 
building and the set of all buildings that responded positively is returned. 

Some fraction of these positive responses will not actually fall in the top 50% of energy 
consumers because of the randomized response procedure. Also, some fraction of the 
participants that were in the top 50% will not be included in this output set. The following plots 
in Figures 7 and 8 show the effect of various choices of the privacy parameter on the fraction of 
sites correctly targeted: 

12-463©2020 Summer Study on Energy Efficiency in Buildings



Figure 8. Effect of privacy parameter on targeting accuracy. 500 trials run at each ε. 

For example, at an ε=2, the fraction of correctly targeted sites is about 0.82. A portfolio 
with 100 sites sampled from the targeted group will, on average, have 82 sites correctly targeted 
and 18 incorrectly targeted. 

Interestingly, this method works equally well irrespective of targeting rigor. That is, 
changing the fraction of the population that meets targeting criteria does not have an effect on the 
accuracy of targeted portfolio: 

Figure 9. Comparison of impact of targeting rigor on accuracy. 

Limitations 
Like the comparison group use case, targeting requires relatively high values of ε for 

usable results. The privacy parameter values should be greater than 1.0 to correctly target at least 
70% of sites. For the targeting use case, this may not be problematic either, as these queries only 
have to be run once against sensitive data to inform a multi-year program. 

Another limitation of targeting via randomized response is that a target portfolio will 
always have false positives. It is possible that this will cause some confusion among stakeholders 
that the target portfolio is only mostly full of high value targets.  
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Conclusion 
We have shown how differential privacy can be applied to valuable use cases in the 

energy efficiency sector. This work is currently undergoing pilot testing and will continue to 
evolve. In many ways, the principle of differential privacy parallels the emergence of pay-for-
performance in the energy efficiency sector. Privacy regulation in this sector, namely the 15/15 
standard, has relied on ad-hoc definitions without quantitative rationale for decision-making. It is 
exceedingly difficult to apply this standard to new analytics needs or understand the impact of 
data releases over time. Managing energy data privacy within the status quo of policy and 
technology is like managing the effectiveness of large-scale energy efficiency interventions 
without measuring performance at the meter; it works when everyone agrees based on common 
sense, but breaks down under numerical scrutiny, leaving potential benefits unrealized. In this 
sense, the benefit of differential privacy isn’t as a magic black box that grants privacy for free, 
but as a principled approach that allows decision-makers to quantitatively understand their 
privacy decisions. This firm foundation can potentially unlock a great variety of use cases while 
simultaneously providing stronger privacy guarantees. 

References 
Andersson, F., Abowd, J., Graham M., Wu J., and Vilhuber, L., 2009. Formal Privacy 

Guarantees and Analytical Validity of OnTheMap Public-use Data. In Joint NSF-Census-IRS 
Workshop on Synthetic Data and Confidentiality Protection. Cornell University, Suitland, 
MD. https://ecommons.cornell.edu/handle/1813/47672

Asghar, M., G. Dán, D. Miorandi and I. Chlamtac, "Smart Meter Data Privacy: A Survey," in 
IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2820-2835, Fourthquarter 
2017, doi: 10.1109/COMST.2017.2720195. 

Borgeson, Sam, et. al., Energy Efficiency Program Targeting: Using AMI data analysis to 
improve at-the-meter savings for small and medium businesses.” CALMAC Study ID 
PGE0421.01. 

Dwork, C., 2008. Differential Privacy: A Survey of Results, in: Agrawal, M., Du, D., Duan, Z., 
Li, A. (Eds.), Theory and Applications of Models of Computation. Springer Berlin 
Heidelberg, Berlin, Heidelberg, pp. 1–19. https://doi.org/10.1007/978-3-540-79228-4_1 

Dwork, C., Roth, A., 2013. The Algorithmic Foundations of Differential Privacy. FNT in 
Theoretical Computer Science 9, 211–407. https://doi.org/10.1561/0400000042 

Erlingsson, Ú., Pihur, V., Korolova, A., 2014. RAPPOR: Randomized Aggregatable Privacy-
Preserving Ordinal Response. Proceedings of the 2014 ACM SIGSAC Conference on 
Computer and Communications Security - CCS ’14 1054–1067. 
https://doi.org/10.1145/2660267.2660348 

Fox, J.A, and Tracy, P.E 1986, Randomized response, Quantitative applications in the social 
sciences, SAGE Publications, Inc., Newbury Park, California, [Accessed 13 March 2020], 
doi: 10.4135/9781412985581. 

12-465©2020 Summer Study on Energy Efficiency in Buildings



Hsu, J., Gaboardi, M., Haeberlen, A., Khanna, S., Narayan, A., Pierce, B.C., Roth, A., 2014. 
Differential Privacy: An Economic Method for Choosing Epsilon, in: 2014 IEEE 27th 
Computer Security Foundations Symposium. Presented at the 2014 IEEE 27th Computer 
Security Foundations Symposium (CSF), IEEE, Vienna, pp. 398–410. 
https://doi.org/10.1109/CSF.2014.35 

Johnson, N., Near, J.P., Song, D., 2017. Towards Practical Differential Privacy for SQL Queries. 
arXiv:1706.09479 [cs]. https://doi.org/10.1145/3177732.317773 

Véliz, C., Grunewald, P. Protecting data privacy is key to a smart energy future. Nat Energy 3, 
702–704 (2018). https://doi.org/10.1038/s41560-018-0203-3 

12-466©2020 Summer Study on Energy Efficiency in Buildings


	NJ_Comments_AMI-DataAccess_Recurve_Oct7-2021.pdf
	374_0376_0549_000475.pdf



